Introduction to Quantum \& Computational Chemistry
 for Electronically Excited States Lecture 2

Target: Computer simulations are employed to study the structure and reactivity of single molecules and molecular systems (molecule in solution on in a macromolecular cavity).

Tools: We need a series of software technologies to describe the electronic and geometrical structure of molecules and their time evolution.
(visit http://www.Icpp.bgsu.edu)

The Electronic Energy: Quantum Chemical Technologies

Physics: Total Charge Density (electronic wavefunction)

$$
\delta(r)=N \sum_{s l} \ldots \sum_{s N} \int d r_{1} \ldots \int d r_{N}\left|\psi\left(r_{1}, s_{1}, r_{2}, s_{2} \ldots r_{N}, s_{N}\right)\right|^{2}
$$

Technology: all-electron wavefunction

Ab-initio Quantum Chemical Technologies: The Pople Diagram

Better description of the HF Coulomb hole and

How to get a good wavefunction: The Variational Principle

nuclear coord.
$E_{e l}(\stackrel{\downarrow}{R})_{\text {trial }}=\frac{\left\langle\psi_{\text {trial }}\right| H_{e l}\left|\psi_{\text {trial }}\right\rangle}{\left\langle\psi_{\text {trial }} \mid \psi_{\text {trial }}\right\rangle} \geq E_{e l}(R)_{\text {true }} \quad \Psi(c)_{\text {trial }} \quad E_{e l}(R, c)_{\text {trial }}$
Rayleigh ratio

$$
\begin{aligned}
& \frac{\partial E_{e l}(R, c)_{\text {trial }}}{\partial c}=0 \\
& \frac{\partial^{2} E_{e l}(R, c)_{\text {trial }}}{\partial c^{2}}>0
\end{aligned}
$$

How to get a good wavefunction: The Variational Principle

$$
\begin{aligned}
& E_{e l}(R)_{\text {trial }}=\frac{\left\langle\psi_{\text {trial }}\right| H_{e l}\left|\psi_{\text {trial }}\right\rangle}{\left\langle\psi_{\text {trial }} \mid \psi_{\text {trial }}\right\rangle} \geq E_{\text {el }}(R)_{\text {true }} \Rightarrow \begin{array}{c}
\text { Basis of the HF and Post- } \\
\text { HF Methods: }
\end{array} \\
& E_{e l}(R)_{\text {trial }}=\frac{\left\langle\psi_{\text {trial }}\right| H_{e l}\left|\psi_{\text {trial }}\right\rangle}{\left\langle\psi_{\text {trial }} \mid \psi_{\text {trial }}\right\rangle} \quad \psi_{\text {trial }}=\sum_{i} c_{i} \xi_{i} \Longleftrightarrow \quad \text { Orthonormal set }
\end{aligned}
$$

Variational coefficients (variable)

- Basis functions (fixed)

$$
E_{e l}(R)_{t r i a l}=\frac{\sum_{i j} c_{i} c_{j}\left\langle\xi_{i}\right| H_{e l}\left|\xi_{j}\right\rangle}{\sum_{i j} c_{i} c_{j}\left\langle\xi_{i} \mid \xi_{j}\right\rangle}
$$

(e.g. in the following ξ_{i} can be either an atomic orbital or a determinant) Notice that $\xi_{i=\text { any basis }}$ function. It can be an atomic orbital, a Slater determinant or a CSF

How to get a good wavefunction: The Variational Principle

The Variational Principle: the Ritz Method

Linear variational coefficients (variable)
if the coefficients are not linear (e.g. exponential) the Ritz method cannot be applied

$$
E_{e l}(R)_{\text {trial }}=\frac{\sum_{i j} c_{i} c_{j} H_{i j}}{\sum_{i j} c_{i} c_{j} S_{i j}}
$$

matrix representation of the
Hamiltonian operator

The matrix S for a set of orthonormal basis
functions $=$ the Unit matrix

The Variational Principle:

the Ritz Method (valid for linear variational coeff)

$$
\begin{gathered}
E_{e l}(R)_{\text {trial }}=\frac{c^{t} H_{e l} c}{c^{t} 1 c} \\
\delta E_{e l}(R)_{\text {trial }}=\delta c^{t}\left(H_{e l}-E_{e l} 1\right) c+c^{t}\left(H_{e l}-E_{e l} 1\right) \delta c=0 \\
\text { Scullar Eequation } \longrightarrow\left(H_{e l}-E_{e l} 1\right) c=0 \\
D_{e t}\left|H_{e l}-E_{e l} 1\right|=0
\end{gathered}
$$

The Variational Principle: the Ritz Method

diagonalization \longrightarrow
eigenvectors \& eigenvalues

One way of getting a good wavefunction: The Independent Particle Model

$$
\begin{aligned}
& H_{e l}=-\frac{1}{2} \sum_{i}^{N_{e l}} \nabla_{i}^{2}+\sum_{i}^{\left.N_{e}\right\rangle N_{e l} l} \sum_{j<i}^{\left\lvert\, \frac{1}{k i-r j \mid}\right.}-\sum_{i}^{N_{e l}} \sum_{j<i}^{N_{n u c}} \frac{Z_{j}}{|r i-R j|} \\
& H_{e l}=-\frac{1}{2} \sum_{i}^{N_{e l}} \nabla_{i}^{2}-\sum_{i}^{N_{e l} N_{n u c}} \sum_{j<i} \frac{Z_{j}}{|r i-R j|}=\sum_{i}^{N_{e l}} h_{e l}\left(r_{i}\right) \\
& h_{e \mid}\left(r_{i}\right)=-\frac{1}{2} \nabla_{i}^{2}-\sum_{j}^{N_{n u c}} \frac{z_{j}}{\left|r_{i}-R_{j}\right|} \quad \text { Hartree product (no spin functions) } \\
& \Psi(c)_{\text {trial }}=\phi_{1}\left(r_{1}\right) \phi_{2}(r 2) \phi_{3}\left(r_{3}\right) \phi_{4}\left(r_{4}\right) \ldots \phi_{N}\left(r_{N e l}\right)
\end{aligned}
$$

Electronic Energy Computation with the Independent Particle Model: HF

The Fermi hole is correctly described in Hartree-Fock wavefunction but the Coulomb hole and the Homolysis are poorly described ($>5 \%$ of the electron-electron repulsion is missing).
Far to large for chemical accuracy

The Determinant

is a $n \times n$ matrix

```
monoelectronic wavefunction
    (molecular orbital) electronic coordinates
                spin wavefunction
    spin coordinate
    \psi
    simplified
    notations
    \psi
```


Electronic Energy Computation: HF

Describe the relationship between the variational principle and the Fock equations.

December 22, 1898-December 27, 1974

$$
E_{e l}(R)_{H F}=\frac{\left\langle\psi_{H F}\right| H_{e l}\left|\psi_{H F}\right\rangle}{\left\langle\psi_{H F} \mid \psi_{H F}\right\rangle} \geq E_{e l}(R)_{\text {rue }}
$$

$\mathrm{f}=$ Fock operator

$$
\hat{f} \phi_{k} \stackrel{』}{=} \varepsilon_{k} \phi_{k}
$$

The Slater-Condon Rules

$$
H_{e l}=\underbrace{-\frac{1}{2} \sum_{i}^{N_{e l}} \nabla_{i}^{2}-\sum_{i}^{N_{e l}} \sum_{j<i}^{N_{n u c}} \frac{Z_{j}}{|r i-R j|}}_{\mathrm{F} \text { (one-electron) } \quad \mathrm{G}(\text { two-electrons })}+\underbrace{\sum_{i} \sum_{j<i}^{N_{e l}} \frac{1}{|r i-r j|}}_{i}
$$

(i) If two determinants $\mathrm{I}>$ and $\mathrm{I}^{\prime}>$ are identical and F and G are one-electron and two-electron additive operators, then:
$\left.<|\mathrm{F}+\mathrm{G}|>=\sum_{i}<\Phi_{i}|\mathrm{~F}| \Phi_{i}\right\rangle+\sum_{i>j}\left[<\Phi_{i} \Phi_{j}|\mathrm{G}| \Phi_{i} \Phi_{j} \geqslant-<\Phi_{i} \Phi_{j}|\mathrm{G}| \Phi_{j} \Phi_{i} \geqslant\right]$
(ii) If $\mid>$ and \mid ' $>$ differ by a single spin-orbital ($\Phi_{p} \neq \Phi_{p}^{\prime}$),
$\left.<|F+G|^{\prime}>=<\Phi_{p}|F| \Phi_{p}^{\prime}>+\sum_{j}\left[<\Phi_{p} \Phi_{j}|G| \Phi_{p}^{\prime} \Phi_{j}\right\rangle=<\Phi_{p} \Phi_{j}|G| \Phi_{j}^{\prime} \Phi_{p} \geqslant\right]$
(iii) If I > and I ' $>$ differ by two ($\Phi_{\mathrm{p}} \neq \Phi_{\mathrm{p}}^{\prime}$ and $\Phi_{\mathrm{q}} \neq \Phi_{\mathrm{q}}^{\prime}$),
$\left.\left.\left.<|\mathrm{F}+\mathrm{G}|^{\prime}\right\rangle=<\Phi_{\mathrm{p}} \Phi_{q}|\mathrm{G}| \Phi_{\mathrm{p}}^{\prime} \Phi_{q}^{\prime}\right\rangle-<\Phi_{\mathrm{p}} \Phi_{q}|\mathrm{G}| \Phi_{q}^{\prime} \Phi_{\mathrm{p}}^{\prime}\right\rangle$
(iv) If $\mid>$ and \mid ' $>$ differ by three or more spin orbitals, then
$\left.\langle | \mathrm{F}+\left.\mathrm{G}\right|^{\prime}\right\rangle=0$
(v) For the identity operator $\left.I,\left.\langle | I\right|^{\prime}\right\rangle=0$ if $\mid>$ and $\left.\left.\right|^{\prime}\right\rangle$ differ by one or more spin-orbitals.

Electronic Energy Computation: HF

How does one find a good V_{MF} ? One way is the single determinant trial function $\psi=\mid \phi_{1} \phi_{2}$ $\phi_{3} \ldots \phi_{\mathrm{n}}$, and write down $\langle\psi| \mathrm{H}_{\mathrm{el}}|\psi\rangle$ using the Slater-Condon rules

$$
\begin{gathered}
\langle\psi| \mathrm{H}_{\mathrm{el}}\left|\psi>=\Sigma_{\mathrm{k}=o \mathrm{occ} .}<\phi_{\mathrm{k}}\right| \mathrm{T}_{\mathrm{e}}+\mathrm{V}_{\mathrm{e}, \mathrm{n}}\left|\phi_{\mathrm{k}}\right\rangle+1 / 2 \Sigma_{\mathrm{k}, \mathrm{j}=o \mathrm{ccc}} . \\
{\left[<\phi_{\mathrm{k}}(1) \phi_{\mathrm{j}}(2) \mathrm{e}^{2} / \mathrm{r}_{1,2}\left|\phi_{\mathrm{k}}(1) \phi_{\mathrm{j}}(2)>-<\phi_{\mathrm{k}}(1) \phi_{\mathrm{j}}(2) \mathrm{le}^{2} / \mathrm{r}_{1,2}\right| \phi_{\mathrm{j}}(1) \phi_{\mathrm{k}}(2)>\right]}
\end{gathered}
$$

and observe that Coulomb $\left(\mathrm{J}_{\mathrm{k}, \mathrm{j}}\right)$ and exchange $\left(\mathrm{K}_{\mathrm{k}, \mathrm{j}}\right)$ integrals among occupied orbitals arise.

If one minimizes this energy with respect to the ϕ_{J} 's coefficients (c), with the constraint that

$$
<\phi_{\mathrm{J}} \mid \phi_{\mathrm{K}}>=\delta_{\mathrm{J}, \mathrm{~K}}
$$

one obtains the HF system of equations:

$$
\mathbf{f} \phi_{J}=\varepsilon_{J} \phi_{J}=\left[\mathbf{T}_{\mathrm{e}}+\mathbf{V}_{\mathrm{e}, \mathbf{n}}\right] \phi_{\mathrm{J}}+\Sigma_{\mathrm{k}}\left[\left\langle\phi_{\mathbf{k}}(\mathbf{1})\right| \mathbf{e}^{2} / \mathbf{r}_{1,2}\left|\phi_{\mathrm{k}}(\mathbf{1})>\phi_{\mathrm{J}}(\mathbf{2})-<\phi_{\mathrm{k}}(\mathbf{1})\right| \mathbf{e}^{2} / \mathbf{r}_{1,2} l \phi_{\mathrm{J}}(\mathbf{1})>\phi_{\mathrm{k}}(\mathbf{2})\right.
$$

therefore \mathbf{f} contains the $\mathrm{J}_{\mathbf{k}}(\mathbb{1})=\left\langle\phi_{\mathbf{k}}(\mathbb{1})\right| \mathrm{e}^{2} / \mathbf{r}_{1,2} \mid \phi_{\mathbf{k}}(\mathbb{1})>$ and $\mathbf{K}_{\mathrm{k}}(\mathbb{1})=\left\langle\phi_{\mathbf{k}}(\mathbb{1})\right| \mathrm{e}^{2} / \mathbf{r}_{1,2} \mid \phi_{\mathrm{J}}(\mathbb{1})>$ integral operators.

Electronic Energy Computation: HF

A physical picture of Coulomb and Exchange interactions:
$\mathbf{J}_{1,2}=\int\left|\phi_{1}(r)\right|^{2} \mathbf{e}^{2 / / r-r^{\prime} l\left|\phi_{2}\left(r^{\prime}\right)\right|^{2} d r d r^{\prime}=\int J_{1}(r)\left|\phi_{2}\left(r^{\prime}\right)\right|^{2} d r^{\prime}=\int\left|\phi_{1}(r)\right|^{2} J_{2}\left(r^{\prime}\right) d r \mid}$

$$
\begin{aligned}
& J_{k}=\int \frac{\left|\phi_{k}(r)\right|^{2}}{r-r^{\prime}} d r \\
& \text { operatomb operator on } \Phi j\left(r^{\prime}\right)
\end{aligned}
$$

$\mathrm{K}_{1,2}=\int \phi_{1}(\mathrm{r}) \phi_{2}\left(\mathrm{r}^{\prime}\right) \mathrm{e}^{2 / / r-r^{\prime} \mid \phi_{2}(r) \phi_{1}\left(r^{\prime}\right) d r d r^{\prime}, ~}$

$$
K_{k}=\int \frac{\left|\phi_{j}(r) \phi_{k}(r)\right|}{r-r^{\prime}} d r
$$

Exchange operator operates on $\Phi j\left(r^{\prime}\right)$ and $\Phi k\left(r^{\prime}\right)$

Electronic Energy Computation: HF

$$
H=T_{e}+V_{e, n}+V_{e, e}
$$

So, one can define V_{MF} in terms of the J and K interactions. This is the Hartree-Fock definition of V_{MF}.

It has the characteristic that

$$
\mathrm{E}^{\mathrm{HF}}=\langle\psi| \mathrm{H}^{\mathrm{HF}}|\psi\rangle \geq \text { Etrue }
$$

if H^{HF} is defined as

$$
\mathrm{H}^{\mathrm{HF}}=\mathrm{T}_{\mathrm{e}}+\mathrm{V}_{\mathrm{e}, \mathrm{n}}+(\mathrm{J}-\mathrm{K})
$$

In this case,

$$
\mathrm{H}-\mathrm{H}^{\mathrm{HF}}=\mathrm{V}_{\mathrm{e}, \mathrm{e}}-(\mathrm{J}-\mathrm{K}) .
$$

Notice that it is by making a mean-field model that our (chemists') concepts of orbitals ϕ_{J} and of electronic configurations (e.g., 1s $\alpha 1 \mathrm{~s} \beta 2 \mathrm{~s} \alpha 2 \mathrm{~s} \beta 2 \mathrm{p}_{1} \alpha$) arise.

Electronic Energy Computation: HF

How to compute the molecular orbitals efficiently?
There are N MOs $f \phi_{k}=\varepsilon_{k} \phi_{k}$
Fork operator (for each k orbital)
total number of nuclei

Exchange
electron in orbital k interacting with electron in orbital i

$$
K_{i}(k)=\iint \phi_{i} \phi_{k} \frac{1}{r_{12}} \phi_{i} \phi_{k} d r_{1} d r_{2}
$$

Electronic Energy Computation: HF

- Secular equations:

$$
\begin{aligned}
& f_{\mu v}=\left\langle\xi_{\mu}\right| f\left|\xi_{\nu}\right\rangle \quad S_{\mu \nu}=\left\langle\xi_{\mu} \mid \xi_{\nu}\right\rangle \\
& \sum_{\mu}\left(f_{\mu v}-\varepsilon S_{\mu \nu}\right) c_{\mu}=0
\end{aligned}
$$

The number of orbitals

- equal the number of basis functions ("atomic" orbitals).

$\varepsilon_{i}, \quad \phi_{i}=c_{i, 0} \xi_{0}+c_{1,1} \xi_{1} \quad+\ldots+c_{i, \mu} \xi_{\mu}$
\square
$\phi_{1}=c_{c_{1,0} \xi_{0}+c_{1,1} \xi_{1}}$ $+\ldots+c_{1, \mu} \xi_{\mu}$

Molecular orbitals coefficients (eigenvectors)

Electronic Energy Computation: HF

O Orbital energies: kinetic energy of the electron + the energy resulting from the averaged interaction of the electron with the other $2 \mathrm{~N}-1$ electrons.

$$
E_{e l}(R)=\sum_{k=1}^{N}\left[2 \varepsilon_{k}-\sum_{j=1}^{N}\left(2 J_{k j}-K_{k j}\right)\right]
$$

- Electron density $\rho=\sum_{k}\left|\phi_{k}\right|^{2}$

Orbitals: linear combinations of atomic orbitals with $c_{i k}$ being the variational coefficients.

Electronic Energy Computation: HF

ENIAC, short for Electronic Numerical Integrator and Computer

27 March 1897 - 12 February 1958

Hardware Technologies

MIPS

(Millions of Operation/Sec)
FLOPS
(Floating Point Operation/Sec)
R. Mulliken

PostDoc in London

"Atomic" Basis (Basis Sets)

HOMO (benzene)

Hydrogen-like orbitals

n	principal quantum number \rightarrow shell	$\mathrm{n} \geq 1$
l	angular momentum \rightarrow sub-shell	$0 \leq \mathrm{I} \leq \mathrm{n}-1$
$\mathrm{~m}_{\mathrm{l}}$	projection of $\mathrm{I} \rightarrow$ energy shift	$-\mathrm{I} \leq \mathrm{m}_{l} \leq \mathrm{l}$

" Atomic" Basis (Basis Sets)

one-center
ξ_{i} must form $\mathrm{a} \approx$ complete set of orthonormal functions two-centers three-centers four-centers
$J_{k j}=\left\langle\phi_{k}(1) \phi_{j}(2)\right| \frac{1}{\left|r_{1}-r_{2}\right|}\left|\phi_{k}(1) \phi_{j}(2)\right\rangle \square \sum_{\alpha \beta \gamma \delta}^{M_{\text {madis }}} c_{\alpha k} c_{v j} c_{\beta k} c_{\delta j}\left\langle\xi_{\alpha}(1) \xi_{\gamma}(2)\right| \frac{1}{\left|r_{1}-r_{2}\right|}\left|\xi_{\beta}(1) \xi_{\delta}(2)\right\rangle$

Coulomb

atomic integrals ! no variational coefficients (disk storage or direct)

HOMO (benzene)

" Atomic" Basis (Basis Sets)

" Atomic" Basis (Basis Sets)

Gaussian Type Orbitals (GTO):

Samuel Francis Boys

 was born in 1911, he died in 1972.S.F. Boys, G.B. Cook, C.M. Reeves and I. Shavvitt,

Automatic fundamental calculations of molecular structure.

Nature 178, 1207 (1958).

" Atomic" Basis (Basis Sets)

Minimal Basis: enough functions to accommodate all the electrons

STO-3G Basis Set

End

Lecture 2

